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The paper deals with a series of Fourier syntheses which have been worked out for 'developing' a 
structure when information is available about a part  of the structure, i.e., when some of the atomic 
positions are known. The syntheses are of two classes, which have been named the alpha and beta 
classes. In the former class, a suitable combination of the measured intensities, namely IF(H)I 2, 
with the intensities due to the known group of atoms alone, say [Fp(H)I 2, is multiplied by F2(H), 
the structure factor of the known atoms, and these are used as coefficients in a Fourier synthesis. 
In the beta class, the same combination is divided by F~(H) and then used as coefficients in the 
Fourier synthesis. In  both classes of syntheses, there is a concentration of electron density at the 
positions of the unknown atoms. In each class, four different types of syntheses have been suggested 
according to the nature of the available data, e.g., if only a single crystal is available, or if an iso- 
morphous pair is available, or if some atoms in the single crystal exhibit anomalous dispersion and 
so  on.  

The unwanted background is least in the case of isomorphous and anomalous syntheses, of which 
the latter is the more powerful one. The syntheses are particularly useful with non-centrosymmetric 
crystals, although, if the known group of atoms have a centre of symmetry, then the syntheses also 
exhibit an artificial inversion centre. The general theory is discussed in this paper, while the detailed 
proofs are given in Part  II .  

1. In troduc t ion  

As is well known, i t  is possible to obta in  the  Pa t t e r son  
diagram of a crystal  s t ructure  by  performing a Fourier  
synthesis,  using the  measured intensit ies (IF(hl~l)l ~) as 
coefficients. This diagram gives the  autocorrela t ion 
funct ion of the  electron-densi ty dis t r ibut ion in the  
crystal,  and contains peaks a t  positions corresponding 
to the  in tera tomic  vectors between the  a toms in the  
crystal,  i.e., 

p~ = ri l  -- r~ - r l  (i, j = 1 to N ) ,  (1) 

where N is the to ta l  number  of atoms in the uni t  cell. 
I t  is also obvious tha t ,  if no fur ther  informat ion  
about  the  s t ructure  is available, other  t han  the  mea- 
sured values of IF[ e, then  the  Pa t te r son  contains all 
the informat ion  t h a t  is contained in the  measured 
data.  This follows because if F is the  Fourier  trans- 
form of the s t ructure  (~ say), then  Q is obta ined by 
inver t ing this t ransform, by using the da ta  on F.  
Since only ]FI 2 are measured, its Fourier  t ransform 
would give, in real space, all the  informat ion  about  
the  s t ructure  which is contained in the  measured data.  

This a rgument  may  be made clearer by taking  the  
usual representa t ion of the electron-densi ty distribu- 
t ion in an  actual  crystal, namely  in terms of individual  
atoms. If  the  scat tering powers of these a toms (j = 1 
to N) are denoted by fj, then,  as is well known, 

~v 2 

IF(hlcl)[ ~ = .~1 f i  exp 2~i  (hxj + kyl + lzj) (2) 

where 

zv .5 r 

= .~, ~Y, f f f i  cos 2z(hu~j+lcv~j+lwij) , (3) 
i =1  j = l  

( ~ i J ,  V t j ,  W i j )  = r i j  . 

I t  is obvious from the  form of this funct ion t h a t  no 
informat ion  about  the  individual  a tomic coordinates 
xj, yj, zj is contained in the  Pat terson,  but  only t h a t  
about  the  in tera tomic  vectors u~j, v~3", wij. 

Thus, in principle, the  de te rmina t ion  of the  actual  
s t ructure  from the X-ray  da ta  (which for all pract ical  
purposes is equivalent  to the  de te rmina t ion  of the  
atomic coordinates xj, yj, zj) is equivalent  to the  de- 
duct ion of the  atomic coordinates from the  in tera tomic  
vectors, by making  use of auxi l iary data,  other  t h a n  
the intensities. The need for using auxi l iary  da ta  must  
be par t icular ly  emphasized for it  is often s ta ted in the  
l i tera ture  on the  subject  t h a t  a s t ructure  has been 
solved purely from the  intensities, using say, in- 
equal i ty  methods,  or probabi l i ty  methods  etc. I n  all 
these cases, the  auxi l iary da ta  which have been fed 
in are not  explicit. The inequal i ty  method  is not  very  
useful if the  number  of a toms in the uni t  cell is large 
and  the  atoms are all alike. If, on the  other  hand,  the  
number  is small, or if a small number  of a toms are 
heavy,  t hen  their  interact ions are dist inguishable in 
the Pa t te r son  diagram, and this could form as good 
a s tar t ing point  for solving the s t ructure  as the in- 
equal i ty  methods.  Thus, a careful s tudy  of the  aux- 
i l iary informat ion  which is fed in for s t ructure  analysis 
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should be of great help in developing general methods 
for the analysis of crystal structures. 

A general survey of this type is reserved for a later 
paper. In this paper, it is proposed to study the effect 
of one type of such auxiliary information, namely the 
knowledge of a part of the structure. This often hap- 
pens during the process of structure analysis. Thus, 
in the heavy atom technique, the positions of the heavy 
atoms can be found out and in the isomorphous re- 
placement technique, the configuration of the group 
of replaceable atoms is also generally determinable. 
If the crystal is centrosymmetric, this information 
helps to obtain the signs of a number of reflections. 
In the non-centrosymmetric case, no such definite 
information is available, although it may lead to a 
limitation of the phase angle. I t  is the purpose of this 
paper to discuss what are the best types of syntheses 
which can be employed making use of the partial 
information about the structure. I t  is found that  any 
such partial information about the atomic positions 
can be fed in to obtain a better picture of the struc- 
ture than what was available before. In other words, 
it should be possible to 'develop' a structure from the 
partial knowledge, making use of the intensity data. 

I t  is, perhaps, of interest to mention that  the 
present study arose from a systematic discussion of 
the Difference-Patterson (D.P.) technique (Kartha & 
Ramachandran, 1955) from the Fourier-synthesis point 
of view. :Buerger (1950) has shown that, in principle, 
a vector set (Patterson) can be solved for the funda- 
mental set (namely the structure). Thus, the structure 
is there right in the Patterson; it has only to be ex- 
tracted out. The D.P. is one of the methods of doing 
this. I t  was shown that  by using the superposition 
method, it is possible to solve the D.P. for the struc- 
ture uniquely, except in the case of a non-centre- 
symmetric structure in which the set of replaceable 
atoms has centre of symmetry, when there is a duplica- 
tion of the structure by an artificial centre of sym- 
metry. The attempt to interpret these results from the 
point of view of Fourier synthesis led to the various 
syntheses to be discussed in this paper.* 

In the last section of the paper, a method is also 
suggested for obtaining the structure from the Patter- 
son alone without having even partial information 
about any of the atomic positions, but using the 
knowledge about the number and nature of the 
atoms in the structure. This method is likely to succeed 
best when all the atoms are alike, a case which is not 

* I t  was in teres t ing  t h a t  the  D.P.  can be solved by  geo- 
met r ica l  me thods  (e.g. b y  vec to r  shif t  methods) ,  while the  
Four ie r  m e t h o d  seemed to fail because of a m b igu i t y  in phase  
de te rmina t ion .  This was po in ted  ou t  to  the  senior a u t h o r  by  
Prof .  P.  P.  Ewald ,  c o m m e n t i n g  on the  paper  on the  Difference- 
Pa t t e r son .  This c o m m e n t  of Prof .  E w a l d  was the  germ f rom 
which  this  whole inves t iga t ion  has  grown and  we should like 
to  record  our  indebtedness  to  h im for his p r e g n a n t  r emark .  
I t  t u rns  ou t  t h a t  the  'double-phased '  Four i e r  synthes is  does 
revea l  the  s t ruc tu re  in the  non-cen t r ie  case, as shown in 
sect ion 3. 

amenable to the other techniques to be discussed in 
this paper in which the 'heaviness' of a group of atoms 
is made use of. 

In order that  the treatment may be readily followed 
by the non-theorists, Part  I will not deal with the 
most general form of the theory. Instead, the special 
cases of isomorphous structures and structures con- 
raining anomalous scatterers will be discussed, which 
show how the two classes of syntheses, designated as 
the alpha and beta class arise in a natural way. A brief 
summary of the main results obtained in the investiga- 
tion and of the properties of the proposed new syn- 
theses are also included in this paper. The proof of 
these, together with other theoretical considerations 
are reserved for Part  II. All the formulae are derived 
for a non-centrosymmetric crystal in this paper. The 
modifications, if any, required for centrosymmetrie 
structures are indicated in the succeeding parts. 

2. S tatement  of the pr ob le m and m a i n  resul ts  

We suppose that  the positions of a (small) number P 
out of a total of N atoms in the unit cell are -known, 
so that  the number of unknown atoms is Q = N - P .  
The subscripts N~, P~ and Q~ will denote one of the 
atoms of the category N, P and Q respectively and 
in each case, the summation over j will be over the 
appropriate number. Thus, the structure factor F2v 
of the whole crystal for a reflection denoted by the 
index H (which stands for the triplet h,/c, 1 and also 
represents the corresponding reciprocal vector), is 

~r 

F~(H) = ~ ' f m  exp 2JdH.r2v~= [F2vl exp icon (4) 
j = l  

and the structure factor of the P-atoms is 

P 
Fp(H) = ~Y, f m  exp 2oziH.rm= IFP[ exp l a p .  (5) 

]=1 

In general, we know ]FNI e, the intensities of the re- 
flections given by the whole crystal, and also F p ,  

the structure factor of the P-atoms both in magnitude 
and phase, since the positions of these atoms are 
assumed to be known. In addition, foJ the atomic 
scattering factors of the other atoms are also known. 

Making use of these data, two classes of Fourier 
syntheses have been worked out for developing the 
structure. The first, called the a-class, has as coeffi- 
cients the product 0f [FNl 2 with Fp in the general case, 
and the second, called the //-class makes use of the 
quotient of [FNI 2 by F* (where F* is the complex 
conjugate of F p )  in the general case. The two syntheses 
thus make use of the coefficients 

0¢gen= ]FNI21Fp] e x p  iap (6) 
and 

flgen=(IFev[2/tFp[) exp i~p .  (7) 

We shall use the equality symbol, as in the above 
equations, to denote the Fourier synthesis in which 
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Table 1. Coefficients to be used in the different a- and fl-syntheses and list of peaks occurring in each. 
Negat ive  peaks are indica ted  by  a bar  over  thei r  Symbols 

The set 4.1 are the  required  peaks 
Type  of 
synthesis  Coefficient 

~Xgen [ F . v [ 2 [ ~ p [  e x p  ic~p 
a m o d  ( ] F N ]  2 - -  [ F p [  2 - -  ~.f~])]Fpl e x p  iap 

] 
ais (~[/~V[ 2 -  ~[Fpl2)IFp[ exp lap  
aan [_~A [F.~-I ~ -- (F'pF~'* + F'~*F~')][F'/I exp ia'p' 

flgen agen/l-F~[ ~" 
f lmod a m o d / l F P ]  2 

Peaks 

1.1, 1.2, 2.1, 2.2, 3.1, 3.2, 4.1, 4-2 
2.2, 3.1, 3.2, 4.1, 4.2 

3-1, 3-2, 4.1, 4-2 
3.1, 3.2, 4.1, 4.2 
1-1, 1.2, 2-1, 2.2, 3.1, 3.2, 4.1 
2.2, 3-1, 3.2, 4.1 
3-1, 3.2, 4-1 
3.1, 3.2, 4.1 

the quanti t ies  on the r ight  hand  side are used as co- 
efficients. Thus, equat ion (6) represents the Fourier  
summat ion  

0¢gen = ~ [FN(H)[~[Fp(H)[ exp [ - i 2 z H . r  + i a p ( H ) ] .  
. (s) 

I t  can be shown tha t  both the c¢- and fl-class of syn- 
theses tend  to deconvolute the Pat terson funct ion and 
yield the structure,  a l though against  a background of 
unwanted  peaks. The ratio of the heights of the 
wanted to the unwanted  peaks is of the order of P,  
the number  of known atoms, and the background in 
the case of fl-syntheses is always much  less t han  for 
the c~-class. In  either case, the background can be 
considerably reduced by  modifying the coefficient of 
the synthesis  from tha t  given above for the general 
case. Thus even in the absence of any  other informa- 
tion, one knows 

Q 
2 

fQj 
j = l  

in addi t ion to Fp .  Thus, one m a y  calculate the modi- 
fied a-synthesis  

~ o d  = [[FNI e -  [Fp [2 - / : f~ j ] [FPI  exp iap (9) 
i 

and the modified B-synthesis 

[ IF~vl 2 -  IFPI 2 - Z f~j] 

fl,-od = IF~[ J exp i~Xp,  (10) 

in which there would be no peaks in the positions of 
the known atoms P,  and the background would also 
be reduced. 

Fur ther  reduction is possible in the special cases 
when the group of P known atoms are the replaceable 
atoms of a pair  of isomorphous crystals, or when they  
consti tute a group of anomalous scatterers. The corre- 
sponding syntheses are, with isomorphous crystals, 

~i~=[(51F~]~--~IFpI2]IFp[ exp ic¢p (11) 

fl~s=~s/IFPI 2 (12) 
where 

~ I F ~ ] ~ = I F T [ ~ - ] F ? I  e, ~]Fple=[F<fi)[u-]F<fi)] 2 (13a) 

and 

The superscripts (1) and (2) s tand for the  two iso- 
morphous crystals. I t  will be noticed tha t  6[F~[ 9 is 
known from exper iment  and 6[Fp] 9 and Fp are calcul- 
able from the known positions of the replaceable atoms. 

Wi th  a crystal  containing anomalous scatterers, if 

A ]F(H)]2 = [F(H)I 2 -  I F ( -  H)I 2, 

namely  the in tens i ty  difference between a pair  of 
t t! 

inverse reflections, and if /~p, / ' p  are the structure 
ampl i tudes  of the P-a toms  contr ibuted by  the real 
(fPi) and  imaginary  (iAf'p~) components of the atomic 
scattering factors fp~, then  we can form the anomalous 
a-synthesis  : 

~ = = [ ½ A I F ~ I ~  ' , , ,  , ,  . . . . . . .  - ( F p F p  -bFp Fp)][F~[ exp z~p (14) 

and the anomalous fl-synthesis: 

Ba.= ~=/IF~'I =. (15) 

I t  m a y  be ment ioned tha t  the second te rm wi th in  
the square bracket  in equations (14) and  (15) vanishes 
when the anomalous scatterers (P-atoms) are all of 
one type  of atom. The two syntheses then  become 
identical  with the sOn - and fl°n-syntheses discussed in 
section 4. 

Table 2. Positions of the peaks occurring 
in the various syntheses 

The designation follows that in Part II 

For the relative weights and number of peaks in the a- and 
fl-class, see Tables 1 and 2 of Part II 

Designat ion  Posi t ion Descr ipt ion 

1.1 rp] K n o w n  
1.2 rpi--  rl,  j + r~,/~ (i :~j) U n w a n t e d  
2.1 rp]  K n o w n  
2.2 rqi--rQj-{-rj,k (i~=j) U n w a n t e d  
3.1 2r pi-- rQk U n w a n t e d  
3.2 r/~i+ r p  1 -  rQk (i%j) U n w a n t e d  
4.1 r q/ W a n t e d  

4.2 rpi--  rp) + rQk (i=~j) U n w a n t e d  

64* 
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The various syntheses are summarized in Tables 1 
and 2. Table 1 contains the coefficients to be employed 
and the positions of the wanted and unwanted peaks 
in each case. The peaks are denoted by numbers, from 
(1.1) to (4.2) in this table, and the corresponding co- 
ordinates, the number and weight of the peaks are 
given in Table 2. 

The relative advantages of the different syntheses 
will be considered in detail later. Here, we may 
mention that,  as one goes down Table 1, the back- 
ground will be noticed to get progressively reduced 
both in the a- and fl-elass of syntheses. In  the syntheses 
using data from anomalous scatterers, the background 
becomes part ly negative in the c~- and wholely negative 
in the fl-elass. In  general, the background is less in the 
fl-syntheses than in the a-class of syntheses. 

Although the various syntheses have been derived 
in a systematic manner in the present investigation, 
it should be mentioned tha t  some of the fl-syntheses, 
namely flge= and two syntheses closely similar to 
~mod and fl~.~ have been previously mentioned by 
Rogers (1951). The authors were not aware of this 
paper during the development of the work reported 
here and they are grateful to Prof. A. J. C. Wilson 
for drawing their attention to it. 

We shall now consider the genesis of the two classes 
of syntheses, c~ and ft. 

3. S i g n i f i c a n c e  of t h e  a -  a n d  f l - c l a s s e s  of  s y n t h e s e s  

The essential properties of the a- and fl-syntheses are 
best understood with reference to a pair of isomor- 
phous crystals. Suppose there are N atoms in the unit 
cell of both the crystals, P of which in one are replaced 
by P other atoms in the other. Let r(~) and f(~] be the JR/ 
atomic scattering factors of the two types of atoms 
and let F ~  and F~) represent the structure amplitudes 
of the two crystals. If, as before, we denote by Q 
the rest of the atoms, which occur in the same positions 
in both the crystals, then 

FN(I~ / 

D 

B 

0 
Fig. 1. Relation between structure amplitude vectors 

with isomorphous crystals 

F(~)=F(~) + FQ, .~r'(~)=F~) + (16) 
where 

F~)'('2)=Zf~ '(') exp 2 ~ i r p ~ . H .  (17) 

The relationships between these vectors are shown in 
Fig. 1 in which their phases are also marked. I t  is in 
general possible to find the positions of the replace- 
able atoms (P), e.g. by an analysis of the Difference- 
Patterson (Kartha & Ramachandran,  1955). Conse- 
quently, both the magnitude and phase of F(~ ) and 
2'(~ ) and consequently of their difference 

Fp=F(~)-F~)=IFpI expiap (18) 

can be calculated. From experiment, the magnitudes 
of IF~)I and [F~ )1 are known. Consequently, the triangle 
OCD of Fig. 1 is fully known and can be solved. 
If we denote the angle at D by yJ, then the phase of 
F~ ) is c~)=  ap_+ v 2. The ambiguity occurs because of 
the well known reason that  only cos ~v is determined 
by the conditions of the problem, being 

~n~,---{IF!@)l 2~- - I  F(2)2;. -l~,12}/{21FpllF~.l} . (19) 

This ambiguity cannot be resolved with a single 
pair of isomorphous crystals. However, let us examine 
what can be done without any other auxiliary data. 
Recasting equation (19), we may write it in the form 

where 
[F~)[ 2 -  F(2)] 2.~, - l F p l  e = 21F~I ]F~)I cos yJ (20a) 

yJ = ~ ) -  COp. (20b) 

The quant i ty  on the left hand side of equation (20a) 
may be obtained purely from experiment, once the 
positions of the P-atoms are known. Consider, there- 
fore, the significance of the right hand side. Writing 
the cosine in terms of exponential functions, we have 

21FplIF~) L cos yJ 
= IF~)l exp [ic~!~)]lF21 exp [ - i a 2 ]  

+ IF~) I exp [--ia~2.)][Fp[ exp [iap] 
_ h-(2) ~7. F(2).Fp (21) 

where F* stands for the complex conjugate of F, i.e., 
the structure factor of a structure which is the inverse 
of the original one. 

I t  may be readily shown (e.g. by the methods worked 
out in Par t  II) that ,  if one performs a Fourier syn- 
thesis using as coefficients the quantities given in 
equation (21) then the synthesis will contain peaks at 
r m - r e ~  and at --(rN~--rpj) with strengths fNifPj 
respectively. Thus, this diagram will contain many 
fewer peaks than the Patterson diagram, although it is 
still in the nature of a vector diagram. However, the 
structure N may be obtained from it by the following 
two methods : 

(a) Multiplicative technique.--The ~-synthesis 
Consider the Fourier synthesis in which one uses the 

following coefficients, instead of those in equations 
(20) or (21) 
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~°s_-(]F~)[2-IF~v2)l 2 -  IF~I~)Fp 
=21FPl21F~[ exp [i~p] c o s v .  (22) 

The notation ai°~ is used to distinguish it from ai.~ in 
equation (11). The right hand side of equation (22) 
may  be put  in the form 

F ~  IFpI 2 + F(~*F~. 

Taking the first of the two terms in the above ex- 
pression, it is seen to lead to a modulationS" of the 
structure to be determined (viz. N (2)) by the Patterson 
of the replaceable P-atoms. I t  can be shown (as is 
proved in Par t  II) tha t  this contains strong peaks at  
the atomic positions of the required structure N, be- 
sides a number of other peaks, whose strengths in- 
dividually are only ( l /P)  times tha t  of the required 
peaks. So also, the second term leads only to a number 
of dispersed spurious peaks. The essential point is tha t  
there is a P-fold concentration (or superposition) of 
peaks at the required positions (viz. of the _N atoms) 
but not elsewhere. 

I t  is interesting to consider the physical significance 
of the synthesis ~i~ using the coefficients in equation 
(22). First of all consider the synthesis 

2 (IF~)Ie-IF~)12-IFPI 2) exp - 2z~iH.r .  (23) 
H 

If only ([F~)[ 2 -  ]F~)I2 ) is used, then this is the Differ- 
ence-Patterson, which contains peaks only at  the 
positions corresponding to P - P  and P-Q types of 
vectors. On the other hand, ]FPI 2 alone leads to the 
Patterson of the P-atoms, i.e., to the P-P  vectors, 
but their peak strengths are less than in the D-P. 
So, if this is subtracted from the D-P, we are left 
with the P-Q in addition to the P-P  vectors of 
diminished strength. 

Now, the coefficients in the above expression are 
multiplied by Fp in equation (22). We may write Fp 
in the form:~ 

F p  ---- .~fj exp 2 ~ i H . r l .  
i 

Taking one of the two terms on the right hand side 
(say with j = l )  and multiplying into (23) we get 

/ :  ( I F ~ > I 2 - I F ~ > 1 2 - I r ~ l ~ ) / 1  e x p  - 2 ~ i H .  ( r -  r ~ ) .  
H 

The effect is readily seen to be equivalent to mul- 
tiplying the values of the synthesis (23) by f l  and 
shifting by the vector r~. Thus, the effect of mul- 
tiplying each term of the synthesis (23) by _Fp and 
thus obtaining (22) is equivalent to performing the 
following geometrical operation on the diagram con- 
raining the P - P  and P-Q vectors" Multiply the value 
of the function at all points in the diagram by f~ and 
shift by r~, by fe and shift by r~ etc. and add the 
resultant values at each point. 

For  an exac t  defini t ion of this te rm,  see 1)art l I .  
:~ The subscr ip t  P is omi t t ed  in this paragraph.  

This is clearly the so-called 'weighted sum function'. 
I t  has been shown in the paper on Difference-Patter- 
son (Kartha & l~amachandran, 1955) tha t  the above 
geometric operation can lead to the structure from 
the D-P. 

Exact ly  the same interpretation may  be given to 
all the four ~-syntheses--viz.,  they  are all weighted 
sum functions. Only the original diagrams on which 
they operate are different in each case. In the case of 
~on, it is the complete Patterson;  with ~moa, the P-P  
vectors are removed; and so on. 

(b ) Division technique.--The fl-synthesis 
There is another way in which the expression (21) 

can be modified to obtain a synthesis leading to the 
structure N; this is by dividing each term by F*. 
Thus, one uses as coefficients 

(IF~I 2 -  IF~+>le-IFpI 2) 
~°s = IFPI - -  exp [i~3 

= 2 IF~) I cos V~ exp [iap] . (24) 

The right hand side now takes the form (omitting 
superscript 2) 

]F~ 1 exp [ialv] + ]F~I exp [-ia2v] exp [i2ap] 
=F~v+F* exp [ i2ap] .  (25) 

The first term leads straightway to the required 
structure N. The second term leads to a modulation 
of the inverse of the required structure by the so-called 
'phase-squared' structure of the replaceable atoms P. 
The effect of this is discussed in detail in Par t  II ,  
but  here we may mention tha t  it leads to a distribution 
of minor peaks, but  does not lead to a concentration, 
if the replaceable atoms form a non-centrosymmetric 
group. Once again, the ratio of the peak heights at  the 
required positions and elsewhere is of the order of P: 1. 

I t  may be wondered why division by 2'* succeeds 
in the same way as multiplication by Fp in resolving 
the Patterson, or vector diagram of a structure. The 
answer is obtained by a s tudy of a Fourier synthesis 
using (l /F*) as coefficient. This is considered in detail 
in the Appendix to Par t  II,  where it is shown tha t  it  
has large peaks exactly at the positions corresponding 
to the original P-atoms (i.e. at  r p / ) ,  with some extra 
minor peaks. Thus, the synthesis with (l /F*) leads to 
peaks at the same positions as the synthesis with P p  
as coefficients. I t  is no wonder tha t  multiplying the 
Patterson coefficients by either of these leads to very 
similar results. 

In fact, i t  may be shown (which is proved also in 
the Appendix to Par t  II) tha t  a synthesis with exp i~xp 
as coefficient has properties similar to the above two 
syntheses, viz. with Fp  and I/F*. So, the simple phase 
factor exp i0¢p should itself serve as a deconvoluting 
agent. Using this a third class of synthesis, called the 
~,-class, has been worked out. The discussion of this 
is reserved for a later paper. 
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So also, a Fourier synthesis with the modulus of the 
structure factor (]FN[) as coefficient leads to a diagram 
with its main peaks at the same positions as in the 
Pat terson (for a proof see Appendix to Par t  II). Now, 
this may  be combined with Fp, 1/F* or exp i a p  to 
get three other classes of syntheses, which are called 
the c,',/5', and ~' classes. These also tend to deconvolute 
the Patterson. The usual heavy atom phased synthesis 
IF~l exp f a r  is the same as the ?~en-Synthesis. These 
again will be considered in detail in a later paper. 

If the replaceable atoms form a centrosymmetric 
group, but  the crystal as a whole does not have a 
centre of symmetry,  then, with respect to this inversion 
centre as origin, a p = 0  or ~ and 20~p=0 or 2~. Hence 
(25) becomes 

= F~ + F* 

and the synthesis leads to the structure plus its inverse 
about the centre of symmetry  of the replaceable atoms. 
I t  is easy to show tha t  a similar result occurs with the 
other a-synthesis also. Here again, there is a concentra- 
tion at the positions corresponding to the structure and 
its inverse about the centre of symmetry of the replace- 
able atoms, but  in addition, there is a background of 
minor peaks. I t  is interesting to recall tha t  this result 
was predicted by Kar tha  & lZamachandran (1955) 
from a s tudy of the technique of obtaining the struc- 
ture from the Difference-Patterson by vector shift 
methods. 

The discussion in this section is mainly for the 
purpose of illustrating the properties of the c~- and 
/5-class of syntheses. Actually when isomorphous crys- 
tals are available, it would be more advantageous to 
use as coefficients for the Fourier series the terms Sis 
and/Sis of equations (11) and (12) rather than the terms 
given in (22) and (24), for it would result in still 
further reduced background and in the elimination of 
the peaks at  the positions of the known atoms P. 
The syntheses which are suggested for actual applica- 
tion under various conditions are given in Tables 1 
and 2, and the proofs of the results are contained in 
Par t  II.  The main a t tempt  in this section has been 
to show the need for multiplication and division by 
F p  or F* for deconvoluting the Patterson, or the 
Difference-Patterson, as the case may be. 

4. Syntheses with anomalous dispersion data 

Suppose tha t  P of the ~Y atoms in a crystal have a 
complex scattering factor for the radiation under 
study, while for the remaining Q atoms the scattering 
factor is real. The P-atoms will in general be heavy 
atoms in such a case and their positions rpj could be 
deduced from a s tudy of the Patterson diagram. 
Obviously, the crystal would exhibit Bijvoet in- 
equality (A IF(H)[~, the difference in intensity between 
the reflections of indices H and - H ) .  From a s tudy 
of the Bijvoet inequality, and making use of the known 

positions of the P-atoms, it  is possible to determine 
the phases of the reflections, but  for an ambiguity 
(see e.g. Ramachandran & Raman, 1956; Raman, 
1958, 1959). If the P-atoms form a centro-symmetric 
group, the effect of this ambiguity is readily under- 
stood. If one chooses the centre of symmetry of the 
P-atoms as origin, the two possible values of the phase, 
say a~ ) and a t  ), are related by the equation 

+ = = .  

In  consequence, if one performs a Fourier synthesis 
using both the phases (the so-called sine synthesis), 
then one obtains in addition to positive peaks at  the 
correct atomic positions, negative peaks of equal 
magnitude at  positions related to these by inversion 
at  the origin (Raman, 1958). The difference from the 
effect of the ambiguity in the isomorphous series case 
is to be noted-- the  peaks at  the inverse positions are 
positive in the latter case, while they are negative here. 

However, if the P-atoms form a non-centric group, 
then the ambiguity takes the form 

a(~) + a ~  = = + 2 ~ ,  

where a~ is the phase of the contribution from the 
real part  of the scattering power from the P-atoms. 
In  this case, no simple meaning can be attached to the 
synthesis making use of both the possible values. 
The situation is exactly analogous to the isomorphous 
replacement method, in which, when the replaceable 
atoms form a non-centric group, the Fourier synthesis 
performed using the two possible values of the phase 
does not have simple interpretation. On the other 
hand, both the alpha and the beta types of syntheses 
can lead to the structure as sho~m above. In the same 
way, in the anomalous case also, one may  either 
multiply or divide the Bijvoet inequality by F~' and 
use these coefficients for Fourier syntheses. Here F~' 
is the contribution from the imaginary component of 
the scattering of the P-atoms. I t  is found convenient 
to use in addition a coefficient ½ in this case, so tha t  
the coefficients to be used in the alpha-anomalous and 
the beta-anomalous syntheses are respectively 

o =IAIFleF~ = ½21FI21F,,] exp ic¢~', (27) 0Can 

fl°n=o~n/IF~12 =(½AIFI2/[F'p'I) exp ia'~'. (28) 

There will be a concentration of peaks at the required 
atomic positions in both cases, together with a spread 
out background of peaks, which is partially negative 
in the alpha synthesis and completely negative in the 
beta case. As in the isomorphous series case, the best 
syntheses using the anomalous dispersion data do not 

,° and /5~n of equations (27) employ the coefficients c%n 
and (28), but  ~an and fl~n of equations (14) and (15) 
which slightly differ from these and lead to the 
elimination of the peaks at the known atomic positions 
rpj. The details are reserved for Par t  II.  
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5. Relative m e r i t s  of the different syntheses  

In view of the negative background the fl~. synthesis 
is superior to all the others. However, it can be cal- 
culated only when the crystal contains a set of anom- 
alous scatterers. One may not always meet with such 
happy examples. In general, it will be possible to 
calculate only the flmod synthesis. The success of this 
synthesis will obviously depend on the nature of the 
P-group. In the choice of the P-group, two factors 
have to be taken into account. The first is the ratio 
of the strength of the wanted to the unwanted peaks 
and the second is the number of unwanted peaks. 
A large ratio can be secured only if either P is large 
or if fP1 is large compared to the .foY. Increase of P 
results in the undesirable increase of the number of 
unwanted peaks. The number is small only if P is 
small or if it is very large, nearly = N, the total number 
of atoms. The latter is impractical and so the optimum 
P-group is a small number of atoms having large 
scattering factors, i.e. heavy atoms. 

I t  is also preferable that  the syntheses are calculated 
in three dimensions rather than in two dimensions. 
The reason is that  the chances of the unwanted peaks 
coming together and forming a peak of strength com- 
parable to a real structure peak are much less in three 
dimensions than in projections. 

An important fact to be taken into account in the 
calculation of the fl-syntheses is that  terms with very 
small values of 1FPI might lead to difficulties. I t  is 
obvious that  if IFp] = 0, the corresponding fl-coefficient 
tends to infinity, so that  the synthesis also becomes 
infinite. However, when IFP]=0, the phase ap is 
completely indeterminate, and if one averages over all 
possible values of C~p the contribution becomes zero. 
Consequently, such terms must be omitted in the 
evaluation of fl-syntheses, and the synthesis will never 
become infinite. However, if IFP] is small, but not 
zero, the corresponding coefficients will be very large 
and will dominate the synthesis. I t  is preferable to 
avoid this by omitting such terms also, and including 
only those terms for which [FPI is greater than a 
specified value, say, one fifth or one-tenth the root 
mean square value for the particular range of the 
Bragg angle. 

The above discussion holds essentially for a non- 
centrosymmetric crystal. The case of a centrosym- 
metric crystal can be readily deduced from these, but 
this is reserved for a subsequent paper. Obviously, 
in this case, neither the c ~  nor the fl~ synthesis is 
possible. So also, if the crystal (N-atoms) is non- 
centrosymmetric, while the known group of P-atoms 
is centrosymmetrie some modifications are needed. 
This is considered in detail in Part  II. 

In conclusion, it is worthwhile comparing the syn- 
theses proposed here with other deconvolutory func- 
tions proposed so far (Beevers & gobertson (1950); 
Clastre & Gay (1950); Garrido (1950); Buerger (1951); 
McLachlan (1951)). Most of these functions require 

that  certain mechanical operations must be performed 
on the Patterson function, so that  they are cumber- 
some to evaluate. The functions presented here are in 
the form of Fourier syntheses and their evaluation is 
quite easy, particularly if computors of the type of 
X-RAC are available. However, all the syntheses 
considered here, except for C%e. and flge,, require that  
the data be reduced to absolute scale. This difficulty 
is there, however, even in the determination of phase 
by the isomorphous crystal method. 

6. Solut ion of the s tructure  s traight  f rom 
the Pat terson  d i a g r a m  

As already mentioned, the solution of a crystal struc- 
ture containing all identical atoms presents special 
difficulties, since it is not easy to locate the atomic 
positions of a part of the structure initially. I t  oc- 
curred to the authors that  in such cases (and in fact 
even more generally) it may be worthwhile refining 
the Patterson diagram itself, without making any 
attempt to obtain the phases. As was mentioned in 
section 1, the intensity data as such do not contain 
any information other than the interatomic vectors, 
and so it would be worthwhile obtaining these vectors 
as accurately as possible directly from the intensities. 
Thus, suppose that  p ~ = r ~ - r j  are the interatomie 
vectors, then 

N N 

[F(H)I 2 = ~ ._.Yfifi exp 2z iH.  ( r~- r j )  
i=i/=i 

iY2 

= Z ~@ exp 2:~iH .p~ (29) 
k = l  

where 
~k=,f,  f i  . (30) 

In view of the centrosymmetric disposition of the 
vectors this takes the form 

½s(s-i) 
]F(H)F' = ~vo+2 ~Y ~v~ cos 2~H.p~ (31) 

k = l  

where 
3r 

~v0 = ~ f~. (32) 
i = l  

When all the atoms are alike, it should be possible 
to estimate from the magnitudes of the peaks in the 
Patterson the number of interactions contained in each 
peak. This should be particularly simple with the 
three-dimensional Patterson. One can then resolve and 
refine the positions of the superposed peaks by the 
method of least squares. The experience gained in 
this laboratory during the last few years with the least 
squares technique suggests that  if the number of 
vectors p~ occurring within a peak and their relative 
strengths (which in our case are equal) are known, 
then they can be resolved by this method. 

Thus, by locating the peaks in the Patterson and 
refining them by the least squares technique, one can 
obtain a complete se~ of interatomic vectors Pk. 
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Although this  involves a lot of labour, the  solution 
thereafter  is simple, for the deconvolution of the 
Pat terson (or the autocorrelation funct ion of the struc- 
ture) is straightforward,  using vector shift  methods 
(Buerger, 1951). In  fact, if a single peak is present 
in  the Patterson,  then  even a single shift  of the origin 
to this  peak is sufficient to extract  the structure, for 
the coincident peaks would give the structure straight- 
way, bu t  for a duplicat ion by  inversion at  the mid- 
point  of the  shift  vector. (A detailed theory of the 
superposition methods will be presented elsewhere). 
Chance coincidences can be e l iminated by  making  
more t han  one vector shift, and the same thing holds 
for the extra  coincidences which occur when shift ing 
to a double peak. In  any  case, if the peak positions are 
accurately known, then  these operations can be made  
algebraically, and techniques can be developed for 
mechanis ing them. 

The essential point  is that ,  in this  technique,  one 
deals direct ly with the in tens i ty  da ta  and  considers 
them as the structure ampli tudes of the 'Pat terson 
structure '  (see Pa r t  II). One then  uses the usual  
methods of :Fourier and  least squares ref inements  for 
obtaining the 'peaks '  Pk in this  structure. The number  
and relat ive heights of these peaks are known before- 

hand.  Thereafter,  using the relat ion tha t  p ~ = r ~ - -  
r~- r~ ,  the Pat terson structure is analyzed for the  
crystal  structure. This last par t  is facil i tated by  making  
use of vector shift  methods.  This approach el iminates 
all need for phase determinat ion by trial  and error or 
other auxi l iary  techniques.  I t  makes use only of the 
informat ion regarding the contents of the uni t  cell, 
namely,  the number  and types of atoms occurring in 
the repeating unit ,  and the in tens i ty  data.  
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This part contains the more detailed mathematical  portion of theory discussed in Part  I. First, the 
significance of various syntheses using as coefficients 2', IF[~,F 2, IFI, exp [ia], exp [2ia], I /F, 
IF] exp [i(~r- a)] and also products of the type F1F 2, where 2' 1 and 2' 2 are the structure amplitudes 
of two portions of a structure, is discussed. I t  is then used to work out the positions and strengths 
of the peaks in the different types of alpha and beta syntheses. The new syntheses are also compared 
with the known types of syntheses, such as the 'heavy atom-phased synthesis'. The main theoretical 
results have been verified by detailed numerical computation made with a hypothetical non-centric 
structure containing 6 atoms. 

1. Introduction 

I n  Pa r t  I, the  general principles involved in the alpha- 
and the beta- types of syntheses were discussed, and it  
was shown how it  is possible to obtain more informa- 
t ion about  a crystal  structure,  if a par t  of it (viz. 
the positions of some of the atoms) is known, making  
use of in tens i ty  da ta  alone. In  the a lpha type of syn- 
theses, a suitable funct ion of the measured in tens i ty  
is multiplied by  the structure factor of the known 

atoms for the same reflection and  the  result ing 
quan t i ty  is used as the coefficient in a Fourier  syn- 
thesis. In  the beta  syntheses, on the other hand,  a 
funct ion of the measured in tens i ty  is divided by  the  
complex conjugate of the structure factor of the known 
atoms and  then used as a coefficient in the Fourier  
syntheses. In  this paper, the detailed theory of these 
syntheses is worked out and the proofs of the various 
s ta tements  made in Par t  I are given. The theoretical  
results have been verified by  means  of numerical  


